امپدانس سیمهای زمین هم بالا می رود و افت ولتاژ روی مقاومت پارازیتی سیمها، زیاد می شود و در نتیجه توان تداخل امواج الکترومغناطیسی نیز بیشتر می شود. سه پارامتر مهم را که در همه منابع تغذیه سوئیچینگ باید زمین شوند عبارتند از:
-۱ سیستم انتقال سیگنالهای با توان کم.
-۲ سیستم قدرت با نویز زیاد.
-۳ جعبه فلزی منبع تغذیه سوئیچینگ.
استفاده از پرده محافظ برای جلوگیری از تشعشع امواج الکترومغناطیسی
یکی از مسائل مهمی را که در طراحی منابع تغذیه سوئیچینگ باید به آن توجه کرد تشعشع امواج الکترومغناطیسی ازقطعات به فضای اطراف است. این مسأله در طراحی منابع تغذیه سوئیچینگ از اهمیت ویژه ای برخوردار است. حتی اگر به سیم کشی و زمین کردن اصولی توجه زیادی داشته باشیم ولی به تشعشع امواج الکترومغناطیسی از قطعات سیستم توجه نکنیم، خواهیم دید که هنوز نویز زیادی در فضای اطراف منبع تغذیهای که با روش سوئیچینگ کار می کند منتشر میشود و این میزان نویز می تواند در سیستمهای مخابراتی و الکترونیکی که در مسافت نزدیک در حال کار هستند بصورت مخرب ایجاد تداخل امواج الکترومغناطیسی کند.
عمل کلیدزنی در رگولاتورهای با فرکانس زیاد می تواند نویز با هارمونیکهای پرقدرت در رنج فرکانسی VHF تولید کند. بسته های قطعات مدار نمی توانند از تشعشع امواج با فرکانس بالای الکترومغناطیسی جلوگیری نمایند و فرکانسهای رادیویی که در فضا براحتی منتشر می شوند، در باندهای رادیویی و تلویزیونی و حتی ماکروویو ایجاد تداخل مخرب می کنند. برای از بین بردن این مشکل باید اطراف قطعات را با پرده های فلزی محافظ که دارای زمین الکتریکی هستند و کاملاً آب بندی شده اند پوشاند. تا از تشعشع امواج الکترومغناطیسی آنها جلوگیری شود و حتی هیت سینکهای قطعات نیز بایستی که زمین الکتریکی شوند.
پرده فلزی
از بین بردن میدانهای الکتریکی خیلی ساده است. میدان فلزی را می توان با یک شیلد فلزی با استفاده از مکانیزم انعکاس و زمین کردن آن در خارج از محفظه شیلد شده از بین برد. اما میدانهای مغناطیسی که اطراف ترانسفورمرها ایجاد میشوند بسختی از بین می روند. اساسی ترین روش شیلد کردن میدانهای مغناطیسی، استفاده از شیلد مغناطیسی جذب کننده میباشد. افزودن خاصیت مغناطیسی به صفحه استیل سالم یکی از راههای زیاد کردن پرمابیلیته است و همچنین می توان از موادی مانند آلیاژ آهن و نیکل نیز به این منظور استفاده کرد. این روشها باعث می شود که میدانهای مغناطیسی اطراف سیستم تا حد زیادی کاهش یابد. استفاده از جعبه های فلزی برای از بین بردن نویز به خنک سازی سیستم نیز کمک زیادی میکند. اثر شیلد کردن سیستم توسط پردههای مشبک به ضلع l و قطر d و ضخامت c از رابطه (1) بدست میآید.
S=(20*Log(l*(c^2)/(d^3)))+(32/d)+38
که در آن باید dλ2π باشد و λ طول موج فرکانسی است که می خواهیم تشعشع آنرا محدود کنیم. مقدار S بر حسب دسیبل بیان می شود.
1.6.2) اندازه گیری و استانداردهای معتبر درباره تداخل امواج الکترومغناطیسی
معمولاً میزان نویز را در خارج از جعبه های محافظ منابع تغذیه سوئیچینگ اندازه گیری می کنند. این اندازه گیری توسط یک دستگاه طیف نگار یا Spectrum Analyzer انجام می شود و می تواند اندازه هارمونیکهای نویز را که در فضا و در اطراف منبع تولید نویز دریافت می کند، به ما نشان دهد.
امروزه ارگانهای مختلف بین المللی دارای استاندارد¬های گوناگونی در محدودسازی نویز در اطراف منابع تغذیه سوئیچینگ هستند. عموماً طراحان منابع تغذیه سوئیچینگ با توجه به نوع کاربرد منابع تغذیه سوئیچینگی که آن را طراحی می کنند و نیز کشور مورد نظر که منابع تغذیه سوئیچینگ طراحی شده در آنها بکار گرفته می شود، از این استانداردها پیروی می کنند و طراحی خود را با توجه به این استانداردها انجام می دهند. از این گونه از استانداردها می توان در بریتانیای کبیر به BS800 و در ایالات متحدهآمریکا به FCC و در آلمان به VDE0871 و هچنین استاندارد مورد تأیید اکثر کشورها یعنی CISPR یاComité International Special des Perturbations Radioélectrique اشاره کرد. این استانداردها محدودیت¬هایی را برای هدایت نویز بین ورودی و خروجی منابع تغذیه که دارای عملکرد سوئیچینگ هستند تعیین می کنند. درجه بندی محور عمودی این نمودار، بر حسب DbµV می باشد. بنابراین DbµV60 در اصل همانmV1 است. اکثر استانداردهای بین المللی میزان ولتاژ نویز را در محدوده باند فرکانسهای رادیویی در ترمینالهای منابع تغذیه سوئیچینگ، در بالاتر از 150KHz به کمتر از 54DbµV + یا 500µV محدود می کنند.
جهت کاهش تداخلات اللکترومغناطیس روشها و عملکردهای متفاوتی وجود دارد در این تحقیق علاوه بر روشهای بالا سعی شده با ارائه توپولوژی جدید در سیستم محرک موتور آهنربای دائم شکل موج خروجی را تا حد ممکن به شکل موج سینوسی نزدیک نموده و با کاهش هارمونیک خروجی کل و استفاده از بازده بالای موتور آهنربای دائم به مدلی دست یابیم که تا حد زیادی تداخلات الکترومغناطیس در آن کاهش یافته و در سطح بالایی از استانداردها قرار دارد.
فصل دوم
اینورترهای چند سطحی
2-1)اینورترهای چندسطحی:
اینورترهایی که تاکنون مطرح شد را میتوان بعنوان اینورترهای دو سطحی مطرح کرد.اگر بتوان بیش از دو سطح ولتاژ در خروجی ایجاد کرد، شکل موج ولتاژ خروجی را می توان به گونه ای شکل داد که شباهت آن به شکل موج سینوسی بیشت
ر باشد
در سال 1980 اینورترهای چندسطحی برای اولین بار مطرح شد. ایده اولیه آن بکار بردن تعداد بیشتری کلید الکترونیک قدرت برای بوجود آوردن چندین پله ولتاژی در سمت ac بود که همانطور که قبلاً نیز صحبت شد این امر باعث میشد تا شکل موج بهتری را در خروجی داشته باشیم. همچنین رویکردی که توسط ایجاد این پلههای ولتاژی بدست آمد بالا رفتن ولتاژ خروجی از ارتباط میان پلههای مختلف که میتوانست خود از هر منبع جداگانهای تأمین گردد است و این مطلب نیز علاوه بر مطالب قبلی باعث شد تا این ایده به یک عملکرد مناسب در ساختار اینورترها منجر شود و مورد توجه روزافزون قرار گیرد.
صنعت دوسطحی برای اینورترهای ولتاژ از این امر ناشی میشد که ولتاژ هر سر خروجی در هر لحظه تنها میتواند دو مقدار را بپذیرد و در واقع کلیدهای اینورتر هر سر را به گذرگاه dc مثبت یا منفی وصل میکند. و در نتیجه مقادیر کمی از ولتاژ در حالت خط به خط و یا خط به نول میتواند وجود داشته باشد حال رویکردی که باعث میشد با چندین سطح مختلف را ایجاد نموده, و در نتیجه بتوانیم از آن سطوح ولتاژی برای رسیدن به اهدافمان استفاده کنیم, تنها از این مطلب ناشی میشد که, هر پله میتواند خود یک منبع تغذیه جداگانه داشته باشد یا اینکه میتوان تقسیمات ولتاژی این سطح متفاوت را ایجاد کرد. شکل زیر بعنوان نشاندهنده این تقسیمات ولتاژی و در حقیقت مبین یک اینورتر چند سطحی پایه با استفاده از کلید قابل انتخاب در خروجی است.
شکل2-1:شکل تک قطبی اینورتر چند سطحی با استفاده از سوئیچ
همانطور که از شکل فوق نیز کاملاً مشخص است منبع تغذیه dc ورودی در میان خازنهای مختلف که البته میتواند مقادیر مساوی یا متفاوتی را داشته باشد تقسیم شده است. برای مثال بگذارید ولتاژ ورودی را kv1 فرض کنیم پس برای تعداد خازنی معادل چهار عدد , روی هرکدام از آنها 250v خواهد بود. این نکته مطلب جالب دیگری را به ما نشان میدهد و آن این موضوع است که این تقسیم ولتاژ باعث میشود تا پلهای با ولتاژ کمتری داشته باشیم یعنی کلیدهای الکترونیک قدرت تنش کمتری را تحمل میکنند و این یک مزیت دیگر در اینورترهای چندسطحی است. حال میتوان با انتخاب سوئیچ هرکدام از سطوح موردنظر را به ترتیب انتخاب کنیم یعنی میتوان در خروجی ولتاژهایی چون0v ـ 250v،500v و 750v و kv1 را داشته و در مسیر برگشت نیز عکس آن ایجاد کنیم.
پس میبینیم که این باعث شد که سیکل ولتاژی بهتری با کیفیت بالاتر یعنی نزدیکتر به حالت سینوسی ایجاد شود هرچه تعداد این حالات بیشتر باشد خروجی به حالت سینوسی نزدیکتر است. شکل زیر مبین این موضوع میباشد در ضمن میتوان حالتهای مختلف را برای یک اینورتر چندسطحی مشاهده نمود. توجه کنیم که با تغییر زمان وصل بودن سوئیچ به هر وضعیت میتوان فرکانس خروجی را تغییر داد.
شکل2-2: شکل موج خروجی بصورت پله ای
اینورترهای چندسطحی میتواند بصورت سه فاز نیز استفاده شود ساختار کلی آن را در شکل زیر مشاهده میکنیم.
شکل 2-3:شماتیک کلی اینورترهای چند سطحی بصورت سه فاز
2-2)رویکرد پیکربندیهای اینورترهای چندسطحی
ساختارهای اینورترهای سه فاز و تکفاز بصورت اینورترهای چندسطحی میتواند با توجه به خواستههای ما و نیز نوع کاربرد آنها متفاوت باشد و ما میتوانیم پیکربندیهای متفاوت را با توجه به این خواستهها طراحی کنیم اما همانطور که میدانیم در طراحیها یک سری فاکتورهای خاص وجود دارد که عموماً میباید رعایت شود از جمله آنها در تمامی پیکربندیهای موجود رسیدن به حداقل هزینه در طراحی است که این باعث این مطلب است که ما میباید تا جای ممکن از حداقل ابزارهای سوئیچینگ استفاده کنیم. و همچنین همانطور که صحبت شد ما توسط اینورترهای چندسطحی میتوانیم ولتاژهای بالا را ایجاد کنیم و یا اینکه ولتاژهای بالا را توسط تقسیمات خاص مورد استفاده قرار دهیم. پس میباید در طراحی نیز این موضوع یعنی قابلیت تحمل ولتاژهای ورودی بالا خصوصاً برای کاربردهای HVDC مورد توجه قرار گیرد. و نیز در نهایت میباید ابزارهای سوئیچینگ را طوری طراحی کنیم که کمترین تلفات را ایجاد نماید همانطور که میدانیم فرکانس قطع و وصل سوئیچ با میزان تلفات آن رابطه مستقیم دارد از این رو میباید در طراحیها هر کلید با کمترین فرکانس قطع و وصل ممکن مواجه باشد تا بتوان راندمان بهتری داشته باشیم.
این مطلب باعث میشود تا طرحهای مختلف بتوانند در قیاس با یکدیگر مطرح شوند. در ادامه چندین پیکربندی اصلی و معروف را مورد بررسی قرار میدهیم و مزایا و معایب هرکدام را نیز بر خواهیم شمرد. اما در حالت کلی و بدون درنظر گرفتن تفاوت میان پیکربندیهای مختلف اینورترهای چندسطحی این ساختار باعث شد تا ما بتوانیم ولتاژ خروجی را با نهایت کمترین اعوجاج و dv/dt تولید کنیم و همچنین با انتخاب فرکانس مناسب سوئیچینگ راندمان را به بیشتر از %98 نزدیک کنیم. و تنشهای متداول را بر روی کلیدهای قدرت کم کرده و آنها را برای استفاده در توانهای متوسط و بالا مناسب سازیم. اما همانطور که تاکنون نیز فهمیدهایم این روش به سبب اینکه میتوانست از منابع تغذیه dc متفاوت برای ولتاژ dc ورودی استفاده نماید فصل مشترک مناسب و خوبی برای کاربرد انرژی های نو و پیلهای سوختی و فتوالکتریک و… است که در ادامه این موضوع بهتر بررسی خواهد شد. ساختار ابتدایی اینورترهای چندسطحی از شش سوئیچ برای سه
فاز ساخته می شود که یک ولتاژ خروجی سینوسی را از چندین سطح ولتاژ بدست می آورد . همه ی اینورترهایی که در زیر بیان خواهند شد در یک چیز مشترک هستند و آن این است که نیاز به فیلتر خروجی کمتر می شود.
در اینجا اینورتر های چند سطحی زیر را معرفی می کنیم:
Diode –Clamped Multilevel Inverter (DCMI)
Flying –Capacitor Multilevel Inverter (FCMI)
Cascaded –Inverters with Separated DC Sources
2-3)پیکربندیهای مختلف اینورترهای چندسطحی
2-3-1) Diode clamped multi level inverter (DCMLI)
یکی دیگر از پیکربندیهای متداول در اینورترهای چندسطحی پیکربندی (DCMLI) میباشد و بطورکلی یک اینورتر diode clamped که دارای m سطح در هر فاز خروجی باشد دارای m-1 خازن خواهد بود. در این ساختار نیز از کلیدهای مکمل (complimentary) استفاده شده است. پیکربندی آن برای یک اینورتر سه سطحی خط به نول در شکل زیر نشان داده شده است. از دیودهای کلمپ در این ساختار برای نگه داشتن ولتاژ در یک سطح استفاده شده است.
شکل2-4:dcmliسه سطحی
برای یک اینورتر فاز از نوع dcmli که در شکل زیر نشان داده شده است.
شکل2-5:اینورتر تک فاز از dcmli
خروجی زیر بدست خواهد آمد.
با کمی توجه به مدار و با قطع و وصل کردن کلیدهای قدرت به صورتهای مختلف میتوان در خروجی مقادیر مناسب را تولید نمود. البته توجه داریم که در این ساختار نیز همانگونه که گفته شد از کلیدهای مکمل استفاده شده است.
جدول زیر نحوه قطع و وصل شدن کلیدها را برای بدست آوردن خروجی مناسب نشان میدهد.
جدول2-1:حالات مختلف کلیدها برای خروجی های متفاوت
با کمی توجه خواهیم فهمید که روند کلی جدول نیز همانند شکل موج طراحی شده و برای بدست آوردن وضعیت در خروجی تنها و تنها یک حالت کلی برای کلیدها وجود دارد و این یکی از نکات قابل توجه و اساسی در این نوع پیکربندی است. این نوع پیکربندی نیز با توجه به کاربردهای آن میتواند در حالتهای تک فاز و سه فاز مطرح شود. و همانند دیگر ساختارها نیز افزایش تعداد سطوح خروجی با کیفیت ولتاژ خروجی رابطه مستقیم دارد. در زیر یک اینورتر چندسطحی سه فاز با پیکربندی dcmli نشان داده شده است.
شکل 2-6 : اینورترdcmliشش سطحی سه فاز
در این میان لازم به ذکر است که این نوع پیکربندی زیرمجموعههایی را نیز در خود جای داده است که در حقیقت همگی از آنچه که در بالا بحث شد منتج شده است و در واقع بهینه شده این نوع پیکربندی برای استفاده در ساختارهای متفاوت است و ما تنها به نمایش این نوع پیکربندیها در کنار پیکربندی اصلی میپردازیم.
شکل 2-7:ساختارهای دیگر dcmli
این نوع پیکربندی نیز در صورت افزایش مناسب سطوح در خروجی میتواند خروجی با کیفیت بالاتر به ما بدهد و ما را از وجود فیلتر بینیاز نماید. و نیز همچنین با استفاده از این نوع پیکربندی در سوئیچ با فرکانسهای طبیعی میتوان راندمان بالایی را بدست آورد. این ساختار با توجه به ویژگیهای خود در کنترل توان راکتیو مورد استفاده قرار میگیرد و سیستم کنترلی نسبتاً ساده آن از جمله مزایای استفاده از این نوع پیکربندی خواهد بود اما با توجه به افزایش تعداد دیودهای کلمپ در اثر افزایش سطح در برخی کاربردها این نوع پیکربندی را مشکل میسازد و عدم کنترل دقیق بر توان اکتیو در حالت مبدلهای تکی